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ABSTRACT 

 

This study uses Unmanned Aircraft Systems (UAS) to provide multispectral imagery and 

point cloud data to measure the health, height, and structure of plants. The high spatial resolution 

coupled with control over the temporal resolution of the data provide a potentially invaluable 

tool for grazing land management.  

Study areas were flown throughout the growing season in 2016 and 2017 at the Texas 

A&M AgriLife Beeville Station at the Tifton 85 and Sandy fields to measure forage health by 

calculating four vegetation indices (VIs) from the resulting reflectance images.  VIs were used to 

estimate forage parameters such as plant height, herbage mass, and protein content, which were 

measured in the field for comparison.  Digital elevation models and digital surface models were 

also created from the structure-from-motion (SfM) point cloud generated from the UAS flight. 

Multiple filtering algorithms were used to classify the raw point cloud into ground and non-

ground classes. The classified points were then used to create ground and surface models for the 

2016 flights.  These surfaces were used to create terrain maps and to attempt to estimate plant 

height throughout the pasture.   

Linear regression analysis was performed to determine the strength of the association of 

each VI to forage field measurements for the 2016 and 2017 flights. Herbage mass and crude 

protein show the most significant regression with most of the vegetation indices, especially in the 

2017 flights.  Inconsistency between the 2016 and 2017 flight results highlights the importance 

of flight parameters in the resulting data.  Future field data collection may show stronger 

relationships given improvements in experimental design and enable more comprehensive and 

accurate estimates of grazing land forage quantity and quality.    
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CHAPTER 1 

1.1 Introduction 

Texas has long been a top producer of agricultural products in the United States.  Nearly 

52.6 million hectares of Texas farm and ranchland provide U.S. consumers with most of their 

beef and poultry.   These same farms and ranches produce more forage and hay than any other 

state [1].  Within its borders, Texas holds the highest-value farm real estate in the nation with 

nearly a quarter-million businesses, over 98% of which are family-owned [2].  The United States 

relies heavily upon these farms and ranches to produce most of its livestock.  The importance of 

the pastures and ranchland that support and nurture these animals cannot be overstated.   

1.2 Precision Agriculture and Remote Sensing 

Precision agriculture is a revolution in modern agriculture.  It has existed in some form 

since the 1930s when the Agricultural Administration of the United States began using aerial 

photographs to help measure cropland area [3].  This approach to modern agriculture focuses on 

acquiring and using data that enables land, crops, and livestock to be managed at as fine a scale 

as possible, both spatially and temporally.  The goal of precision agriculture is to maximize the 

effectiveness of management practices and improve crop and livestock productivity while 

minimizing waste, costs, and negative impacts to the environment [3]–[5]. 

Precision agriculture provides farmers and ranchers with the tools needed to apply 

fertilizer, herbicides, and seed in the areas of greatest need at the most appropriate time [5].  

While older methods of crop and range management use largely uniform application of fertilizer 

or pesticide across an entire field or pasture, precision agriculture allows fields and pastures to be 

managed according to their specific local topography, soil type, management history, and 

position in the larger landscape [5]. 
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Precision agriculture requires the collection, processing, and analysis of large and 

detailed datasets that span large areas and multiple growing seasons.  The process involves first 

collecting the data, mapping spatial and temporal variability, making a management decision, 

and implementing that decision.  Remote sensing is a critical tool for precision agriculture, as it 

can provide all the data necessary to help inform management decisions [3]. 

Remote sensing depends upon different spectral responses of objects to electromagnetic 

radiation.  Specifically for precision agriculture, the focus is on the spectral response of plants 

and soils to sunlight.  Different objects can be identified by their spectral response, and the 

biochemical and physical properties of plants and soils can be measured by measuring their 

reflectance of light at different wavelengths.  The spectral response of plants in particular is 

largely determined by the physical structure of plants and the plant canopy [6], [7]. 

When equipped with sensors, sensing platforms such as satellites, aircraft, unmanned 

aerial vehicles, balloons, tractors, and handheld sensors can be used to measure reflected 

electromagnetic radiation for plants and soils.  Reflectance measurements in plants are inversely 

related to the amount of electromagnetic radiation absorbed by chlorophyll and other pigments 

[3], [5].  Different plant pigments absorb electromagnetic radiation at different wavelengths.   

Chlorophyll, for example, absorbs most strongly between 400 and 700 nm in the visible 

spectrum (Figure 1).  By contrast, plants strongly reflect infrared radiation in the 700 to 1300 nm 

wavelengths [5].  The relationship between reflectance and absorption for various plant pigments 

has led to the creation of various spectral indices used to measure plant properties such as 

herbage mass (HM) and nitrogen content [5], [7].  Spectral indices combine reflectance 

signatures from multiple wavelengths to measure relative quantities of features of interest, such 

as soil or vegetation.  A popular vegetation-focused spectral index is the Normalized Difference 
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Vegetation Index, or NDVI, which compares the near-infrared (NIR) reflectance to the amount 

of reflected visible light.  NDVI can be used to measure the amount of healthy, growing 

vegetation in a multispectral image [8], [9]. 

 

Figure 1. Absorption and reflectance of the electromagnetic spectrum observed in plants [10]. 

1.3 Unmanned Aircraft Systems and Grazing Land Management 

Grazing land management refers specifically to the management of grasslands, 

shrublands, and savannahs which have the potential to be grazed by animals.  These landscapes 

are generally marginal lands which are not suitable to be used for row crop production, but are 

useful for grazing livestock and harvesting hay or silage.  Grazing lands can be affected by 

drought, insect and other pests and diseases, weed encroachment, and overgrazing.  The total 

area of grasslands in the United States is vast, comprising over 35% of the country’s total land 

area [11].  As grazing lands are often used to graze livestock, they can benefit from the same 

precision agriculture principles and technologies that are applied to crop production. 
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The use of satellite imagery has long been in use for precision agriculture, including 

grazing land management, and allows for the measurement of both plant and soil properties.  

Satellite imagery at the required spatial and temporal resolution for the management of grazing 

lands can prove prohibitively expensive for smaller farms and ranches.  Satellite imagery  also 

faces challenges such as cloud cover and insufficient spatial and temporal resolution [6], [7]. 

Imagery collected by UAS (Unmanned Aircraft Systems) can provide much greater 

spatial and temporal resolution than is currently obtainable with satellite data.  Control over 

spatial and temporal resolution is crucial for avoiding cloud cover in the imagery, controlling the 

timing of data collection during the growing season, and obtaining ultra-high-resolution imagery 

with as few mixed pixels as possible.  The resolution of UAS imagery also is sufficiently 

detailed to capture field sample quadrats used as ground truth to compare with collected 

reflectance data [6], [7].  In recent years, UAS have become increasingly more accessible to the 

public as they become smaller and less expensive.  Sensor technology is following the same 

trend.  UAS can be flown at a fraction of the cost of manned aircraft.  Grazing lands are often in 

remote areas, making it easier to acquire permission for conducting small UAS flights and 

complying with regulations set by the Federal Aviation Administration (FAA) [3], [12].  The 

current study utilized small UAS, which is defined by the FAA as an unmanned aircraft 

weighing less than 55 pounds, including any sensors.  A small UAS must be flown during the 

day, at or below 122 meters above ground level, and within visual line-of-site [13]. 

Use of UAS to measure and monitor vegetation for crop management and precision 

agriculture is well-established in many studies [14]–[17], but the same approach has yet to find 

widespread application in grazing land management [18].  The potential benefits are significant, 

as the productivity of cattle is determined primarily by forage quality [19].  Many of the same 
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methods used for precision agriculture can be applied to measure HM and nutritive value in a 

pasture to better inform grazing land management.   

Reflectance data acquired using UAS equipped with multispectral sensors can be used to 

measure HM by analyzing the collected reflectance data using spectral indices.  Vegetation 

indices do not measure biomass directly but are correlated with both plant biomass and the leaf 

area index (LAI), which is a measure of the total leaf area per unit area [20].  HM measurements 

for crop management and conservation can be used for cattle and grazing land management 

applications.  Estimates of HM have been calculated by collecting and weighing samples from 

small quadrats of a known area taken from a field or pasture.  The resulting estimates can be 

improved by increasing the number of samples, but it can only provide an estimate of the entire 

field.  There is still a need for techniques that can collect data on plant health and HM rapidly for 

large areas [7], [18], [21]. 

Recently, techniques have been developed which use active optical LED sensors mounted 

on all-terrain vehicles, which can be driven over pastures and fields to provide a measure of plant 

health by measuring red and near-infrared (NIR) reflection [1].  Red and NIR reflection can be 

used to calculate several indices that correlate with green HM including the NDVI, Simple Ratio 

(SR), Soil Adjusted Vegetation Index (SAVI), and the Modified Non-Linear Vegetation Index 

indices (MNLI) [18].  A 2010 study by Trotter et al. [18] showed the  

log-transformed SAVI index accurately predicted the amount of green dry matter (GDM).  That 

study also revealed substantial intra-field variation (4,000 kg GDM/ha) [18].  This further 

underscores the value of collecting data for an entire field or pasture compared with traditional 

destructive sampling or the transect method used by Trotter and colleagues. 
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Nutritive value is another parameter that can be measured from reflectance data captured 

by UAS.  Nutritive value is a crucial metric as it provides a measure of plant chemical 

composition that is critical for determining if the forage will meet the animal’s nutritional 

requirements [19], [22].  Nutritive value is measured in a laboratory setting and may include the 

digestibility of the available HM measured in vitro, and the concentrations of  

neutral- and acid-detergent fiber and crude protein [23].  Crude protein in forage is calculated as 

6.25% times the nitrogen (N) content, which varies by plant species and maturity through the 

growing season [21].  Cattle eat about 1.25% of their body weight each day [19].  Hence, 

measures of the available nutritive value in a pasture can provide critical information for 

planning how long cattle can graze in a field before supplements are needed or the animals need 

to be rotated to another paddock [19], [21], [23]. 

Traditionally, nutritive value is estimated by testing field samples in the lab, which is a 

costly technique in terms of sample collection, processing, and disposal [23].  Nutritive value can 

also be measured indirectly by looking at various red and NIR indices, like NDVI [18], [21], 

[23].  While they can be costly in terms of technology, data storage, and data processing,  

non-destructive techniques can provide measures of nutritive value faster, at a lower cost, and 

with potentially greater accuracy and temporal resolution than traditional laboratory methods.  

The ratio of near-infrared to red, and the NDVI index, along with other vegetation indices, can 

be used to measure HM and plant stress [18], [21], [23].   

Spectral indices can provide a measurement of chlorophyll in plants as a proxy measure 

of their nitrogen content, and hence their protein content [21], [23].  Previous studies have used a 

spectroradiometer mounted on a boom to measure plant reflectance, and have shown significant 

linear relationships between crude protein and HM with NIR reflectance ratios [23].  In 
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measuring crude protein concentration, it is important to consider the overall HM and growth to 

determine the concentration of crude protein [21], [23]. 

The use of spectral indices with multispectral UAS imagery can provide rapid,  

high-resolution data to measure important biochemical properties of plants for an entire pasture 

or field.  A reliable, accurate, and automated procedure for collecting, processing, and analyzing 

these data would allow for powerful precision agriculture management methods to be applied to  

grazing lands.   

1.4 Structure-from-Motion (SfM) Photogrammetry 

In addition to measuring reflectance, imagery collected by UAS can be used to create 

three-dimensional models of the terrain.  A technique called Structure-from-Motion (SfM) 

photogrammetry can be applied to overlapping image sequences collected from a UAS to derive 

three-dimensional (3D) point clouds of the land cover and terrain.  A point cloud is a set of data 

points in space that represent a physical surface (Figure 2) [24].   

 

Figure 2.  Example of a 3D point cloud, seen in LAStools software. 
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SfM offers an alternative to traditional photogrammetry, which requires more known 

parameters and controls in order to make measurements or a point cloud.  Traditional 

photogrammetry requires the 3D location (X, Y, and Z positions) of the camera or control points 

to be known in order to triangulate and reconstruct positions within the photographed scene [25].  

SfM does not require these positions to be known but instead calculates positions within a scene 

using feature matching between overlapping and offset images [25].  This approach makes SfM 

useful at multiple scales and ranges, and provides a relatively low-cost tool for three-dimensional 

modeling over traditional photogrammetry [25].   

SfM has its origins in computer vision and uses feature recognition to identify features in 

multiple overlapping images [25].   SfM uses the Scale Invariant Transform (SIFT) approach 

which uses “cascade filtering” to help reduce the processing cost necessary to identify features 

that reoccur in multiple overlapping images in a scene [26].  While different software packages 

use varying algorithms, the SIFT approach generally identifies key points that are used to 

identify the same feature in multiple images, and allows feature identification and matching to be 

invariant even at different scales, orientations, and scene or object illuminations [26].  Images 

where the scale differences are extreme enough to fundamentally change the visible 

characteristics of a feature may be rejected by the algorithm [27].  The camera position and 

orientation, along with the three-dimensional scene geometry, are calculated by tracking these 

features from one image to the next.  These calculations are estimated using a non-linear  

least-squares adjustment that is continually refined as more potential solutions become available 

from image pairs and matching key points [25]. 

There are many software packages available for processing UAS imagery, such as Pix4D.  

These software packages identify key points from overlapping images collected by a UAS to 
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create a sparse point cloud (Figure 3).  The sparse point cloud is then densified by using derived 

camera positions as input into various densification algorithms.  Different software packages use 

different algorithms to obtain a densified point cloud [28].  The resulting three-dimensional point 

cloud derived from the combination of all the overlapping images lacks absolute location or scale 

without the inclusion of ground control points or geotagging of imagery (or both).  Ground 

control can be collected either during data collection or after; high-contrast targets with  

high-accuracy positions collected during the image collection provide the best results [25].   

 

Figure 3.  An illustration of how an SfM point cloud is generated from multiple camera positions 

[29]. 

Ground control points can be used to georeference the point cloud using a linear 

transformation (rotation/translation).  Any corrections needed in the image alignment beyond a 

linear transformation can be applied and the point cloud re-constructed using the ground control 

points, to help reduce errors in the final point cloud.  Most software packages also produce an 
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orthomosaic and digital surface model (DSM) along with the point cloud in the final output [28].  

The DSM contains elevation values in a raster format for each location in the point cloud [30]. 

Data collection using UAS provides significant advantages over traditional 

photogrammetry, including the ability to use substantially lower-cost, consumer-grade cameras.  

The UAS platform itself is also much less expensive to obtain and operate than the specialized 

aircraft used in traditional aerial photogrammetry, although the type of UAS used can pose 

sensor limitations as it is much more restricted in terms of payload [31].   

When using traditional photogrammetric methods, the imagery captured by a UAS may 

prove difficult to process due to lower-quality cameras, less stable flights, and off-nadir images 

taken from multiple altitudes [28].  Using a SfM approach largely avoids these issues as the 

camera interior and exterior orientation and position do not have to be specified, and SfM is 

capable of handling images of many different scales and orientations.  In fact the inclusion of 

oblique-angle images along with nadir-view images from a UAS can help compensate for a 

dome-like deformation of elevation values that occurs in the point cloud as a result of  

self-calibration of lower-quality, consumer-grade cameras [28], [30]. 

SfM-derived point clouds can be used to derive digital models of the terrain and land 

cover.  These terrain models can be used as another geospatial data product to inform grazing 

land management.  Digital elevation models, or DEMs, map the “bare-earth” ground surface 

without any vegetation, buildings, or other non-ground features, and can be used to calculate 

slope and model terrain [22], [32].  Digital surface models, or DSMs, map the ground surface 

inclusive of non-ground features like vegetation.  The difference between these two surfaces can 

be used to estimate biomass [32], [33].  Examples of both a DEM and a DSM are shown in 

Figure 4. 



                                                

  

   

11 

 

 

Figure 4. A DEM (left), showing the bare-earth surface.  A DSM (right), showing trees and other 

features along with the underlying surface [32]. 

Recent studies have shown that UAS-collected point clouds can generate DEMs accurate 

within just a few centimeters [30].  In order to obtain this level of accuracy, a control network 

consisting of visible targets can be placed in the field ahead of the UAS flight and ideally located 

using Real-Time Kinematic (RTK) GPS [25].  This control network can then be used for 

accurate image registration and point cloud georeferencing.  Ideally, ground control points 

(GCPs) are evenly distributed throughout the scene or site and with sufficient frequency to 

capture variation in terrain [25], [30].   Errors in GCP positioning will be propagated to the final 

SfM products, so positions of the control points must be as accurate as possible [28], [30]. 

3D point clouds can also be captured by relatively costly LiDAR (LIght Detection And 

Ranging) sensors.  LiDAR sensors use lasers to measure the distance to an object using the time 

elapsed from when the laser light is emitted and when it is returned.  LiDAR sensors can record 

multiple returns from a single laser pulse.  Returns represent multiple elevations (Z) for a single 

(X, Y) location [34].  Compared to LiDAR point clouds, SfM point clouds pose a particular 

challenge for classification as they generate a single elevation (Z) for a given (X, Y) location.  

No return information is provided using SfM, as with LiDAR.  Ground points are generally 

classified by filtering for the lowest point in a given window [35], [36].  This can produce very 

good results when the actual bare earth surface is visible, but in imagery where the ground is not 
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visible the point cloud classification results are not reliable and can vary in accuracy across a 

dataset.  SfM point cloud classification generally requires manual quality control and the 

identification and removal or correction of misclassified points [35].   

SfM point clouds derived from UAS-acquired imagery can be useful for precision 

agriculture as they provide a high-resolution digital model of a field or pasture’s canopy structure 

and exposed terrain.  A high-quality DEM can be used to measure slope, elevation, and aspect.  

Combined with high-quality ground control, SfM point clouds can yield DEMs that can be used 

for multiple applications.  Calculating the difference between an accurate DEM and DSM can be 

used to measure plant height, and slope information calculated from a DEM can be used to help 

determine if there are any areas within a pasture that are less likely to be grazed [22], [37]. 

As the use of UAS becomes more common, research into different techniques for using 

RGB, multispectral, and hyperspectral imagery captured by UAS for precision agriculture has 

increased [38].  Using UAS-based remote sensing to apply precision agriculture methods and 

principles to grazing lands can provide invaluable information to ranchers on plant health, which 

will in turn produce greater livestock yields at a lower overall cost [39], [40].  In order to ensure 

the health and value of their livestock, ranchers must provide adequate forage quantity and 

quality for their animals.  Measuring and monitoring the amount and health of plants in pastures 

is therefore a constant part of grazing land management.  Cattle require particular nutrients in 

their diet which must be supplemented when the forage quantity or quality is not sufficient.  

Current grazing land management practices rely on destructive sampling and laboratory testing 

to estimate forage HM and nutritive value.  Pastures and fields are sampled using representative 

areas which are then tested in the laboratory to generate an estimate of the overall HM and 

nutritive value [38].  This is a labor-intensive process that can fail to capture the spatial 
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variability of important abiotic growth factors, including variations in soil types and topography 

[38], [39].  Destructive sampling can also prove impractical and inaccurate for very large areas, 

which may have remote and inaccessible sections that are rarely if ever measured directly.  

Finally, the results may not always be returned to the farmer immediately, limiting their benefit 

for altering grazing land management practices to meet the needs of livestock as they arise [6]. 

Remote sensing can provide a non-destructive, lower-cost alternative that allows for 

measurement of an entire pasture at a fraction of the time spent in the field [39].  It can also 

provide measurements for areas that would be difficult or impractical to access for destructive 

sampling methods.  Photogrammetry and remote sensing performed with a UAS equipped with a 

digital RGB camera or multispectral sensor can provide 3D point clouds and reflectance data, 

respectively.  Reflectance data can be used for many applications including measuring plant 

health and estimating other biophysical parameters in grazing lands.  3D point clouds can be 

used to estimate crop structure and derive digital terrain models to measure slope, aspect, and 

elevation.  The management of grasslands using UAS provides timely and accurate data for the 

most effective application of the principles of precision agriculture. 

1.4 Study Purpose and Objectives 

The purpose of this study is to develop better methods for informing and refining grazing 

land management through estimation of forage nutritive value and quantity—including  

above-ground HM, nutritive content, and 3D structure—and by modeling terrain.  This study 

uses photogrammetrically-processed RGB and multispectral imagery collected by UAS to 

generate 3D point clouds and reflectance maps.  Point clouds are used in this study to create 

DSMs, and filtered to create DEMs, which are then used to calculate canopy height models.  

Raw point cloud structure is also used to analyze forage structure, including height.  Reflectance 
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maps are used to create vegetation index rasters, which are in turn used to derive estimates of 

above-ground HM and nutritive value.  Consistent correlations between reflectance image 

signatures and field measures could provide more accurate, complete, and detailed measurements 

of pasture forage with each UAS flight.  This study has the following objectives: 

 Create a successful filtering algorithm to classify the SfM point cloud generated 

from UAS-acquired imagery.  Use the classified points to create accurate  

bare-earth DEMs. 

 Calculate plant height and HM using DSMs and DEMs generated from the 

classified SfM point cloud. 

 Determine which of four vegetation indices derived from multispectral data 

acquired using a UAS is most effective at predicting HM and chemical 

composition measured in the field. 
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CHAPTER 2: STUDY AREA AND DATA COLLECTION 

2.1 Study Area 

Data for this study was collected at the Texas A&M Agrilife Research Station in 

Beeville, TX (Figure 5).  The Beeville Station is approximately 567 hectares used to graze 

Brahman-influenced cattle [41].  Brahman-influenced cattle, shown in Figure 6, are the result of 

breeding Brahman cattle with other breeds, such as British or European breeds.  These cross-bred 

cattle generally have a higher heat tolerance and are relatively hardier than their non-Brahman 

counterparts [42].  The Forage Management and Ecology Laboratory is located at the Beeville 

Station and researches sustainable forage systems, the use of native and non-native plants to 

improve livestock system productivity, and the management of forages in South Texas [43]. 

 

Figure 5. The TAMU AgriLife Research Beeville Station is located in Beeville, TX. 
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Figure 6. The Beeville Station is used for grazing Brahman-influence cattle, like the ones shown 

above [44]. 

The Beeville Station contains two experimental pastures, the “Sandy” and “Tifton” fields, 

which were used for this study.  Flights for this study were flown in 2016 and 2017 during the 

growing seasons, between May and October.  Flights were generally flown each month with 

some gaps due to scheduling conflicts.  Another experimental field at the Beeville Station, called 

the “Brush” field, which has had little treatment for brush control over the last 25 years, was 

flown in early 2016 and was used for preliminary point cloud analysis and DEM generation, but 

was not included for subsequent analysis of the multispectral imagery. The relative positions of 

these fields within the Beeville Station are shown in Figure 7.  More detail on the Beeville 

Station and its experimental fields are provided in the following sections, including the most 

common plant and soil types. 
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Figure 7. Relative sizes and locations of the fields at the Beeville Station. 

2.1.1 Plants and Soils 

 There are several plant and soil types found throughout the Beeville Station, and within 

each experimental field.  Huisache (Vachellia farnesiana (L.) Wight & Arn.) is a flowering 

invasive plant found in many Texas pastures and grazing lands, and is found throughout the 

Beeville Station.  Huisache is a small tree in the Legume family, generally found in south Texas. 
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It is also called Sweet Acacia and can reach 4.6 m (15 feet) in height.  Huisache is hardy and 

aggressive and prevents the growth of other forage plants that can be used by livestock.  It can be 

grazed but provides poor nutritional content compared to other plants.  It is commonly spread by 

grazing livestock and requires constant control to prevent its spread [45], [46].  An example of a 

huisache plant is shown in Figure 8. 

 

Figure 8. A huisache plant [46]. 

 Mesquite (Prosopis glandulosa Torr.) is a small to medium tree that is commonly found 

throughout Texas, including the Beeville Station.  It has thorns on its branches and produces seed 

pods.  The beans can be toxic, especially to cattle.  The beans are also high in sugar which can 

cause digestive issues and inhibit the absorption of B-vitamins in livestock [47].  A mesquite tree 

is shown in Figure 9. 
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Figure 9. A mesquite tree [47]. 

 Coastal bermudagrass (Cynodon dactylon [L.] Pers.) is a perennial grass found at the 

Beeville Station that grows from under- and aboveground stems.  It grows well in different soil 

types and is highly adaptable.  It is the most widely planted variety of bermudagrass in Texas and 

is drought- and grazing-tolerant [48]. Buffelgrass (Pennisetum ciliare (L.) Link) is a perennial 

grass considered to be good grazing for livestock and is also found at the Beeville Station.  It is a 

perennial warm-season grass, like coastal bermudagrass [49].  Tifton 85 bermudagrass is a 

hybrid like Coastal bermudagrass.  It is excellent for hay and livestock grazing [50].  Coastal 

bermudagrass and buffelgrass are shown in Figure 10a and Figure 10b, respectively.  

 Parrita-Olmos undulating and Parrita sandy clay loam soils are considered well-drained 

soils that are not prime for farmland.  Weesatche fine sandy loam is prime farmland soil that is 

also well-drained [51].  These soils are found throughout the Beeville Station. 
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Figure 10. (a) A field of coastal bermudagrass (left) [48]. (b) A stand of buffelgrass (right) [49]. 

2.1.2 Brush Field 

 The Brush field is 17 hectares of uncultivated land, which is typically considered native 

grazingland in the region.  The land was acquired by Texas A&M AgriLife in the early 1970s.  

The understory forage is occasionally grazed.  Plant species include mesquite trees and huisache 

brush. Soils in this field are primarily Parrita-Olmos association, undulating soil [41].  The Brush 

field was only included for preliminary tests of the drone flights at the beginning of the study; it 

was not included in the final analysis.  An aerial view of the Brush field is shown in Figure 11. 
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Figure 11. Brush field at the Texas A&M AgriLife Research Beeville Station. 

2.1.3 Sandy Field 

 The Sandy Field, or large pasture, consist of 43.3 hectares planted to ‘Coastal’ 

bermudagrass in the early 1970s.  Encroached weeds in this pasture include buffelgrass and old 

world bluestems (Kleberg’s bluestem [Dichanthium annulatum] and KR bluestem 

[Brothriochloa ischaemum]).  This pasture is one of the rotational paddocks for grazing by cow-

calf pairs, and has been harvested for hay in years of forage excess.  Soils in this pasture consist 

primarily of Parrita sandy clay loam (loamy, mixed, superactive, hyperthermic, and shallow 
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Petrocalcic Paleustolls soil) and an area of Weesatche fine sandy loam (fine-loamy, mixed, 

superactive, hyperthermic Typic Argiustolls) [41].  An aerial view of the Sandy field is show in 

Figure 12. 

 

Figure 12. Sandy field at the Texas A&M AgriLife Research Beeville Station. 

2.1.4 Tifton Field 

The Tifton Field, or small or front pasture, consists of about 5.3 hectares planted to Tifton 

85 bermudagrass in 2011.  It is harvested for hay annually.  The Tifton Field is fertilized 

according to soil tests, and herbicide is applied to control broadleaf weeds as necessary.  
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Encroached weeds include old world bluestems.  The soil consists primarily of sandy clay loam 

soil [41].  An aerial view of the Tifton field is shown in Figure 13. 

 

Figure 13. Tifton field at the Texas A&M AgriLife Research Beeville Station. 

2.2 UAS Data Collection 

The 2016 flights were flown using a senseFly eBee mapping drone equipped with a 

Canon Power Shot S110 NIR camera.  This camera collects data in the red, green, and NIR 

bands.  The Sandy Field flights were flown at 120 m above ground level (AGL), with a 75% 

sidelap and 65% endlap.  The Tifton Field was flown at 60 m AGL with an 80% sidelap and 65% 
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endlap [52]–[54].  The senseFly eBee used in the 2016 flights and senseFly eBee SQ used in the 

2017 flights are shown in Figure 14.  A full comparison of the sensors used in each year is shown 

in Table 1.  Figure 15 shows the response spectrum for the Canon Power Shot S110 NIR Camera 

used in the 2016 flights, and how this response spectrum affects the appearance of vegetation 

compared to an RGB camera. 

 

Figure 14. The senseFly eBee mapping drone used in the 2016 flights (left), and the senseFly 

eBee SQ agricultural drone used in the 2017 flights (right). 

 

Figure 15.  The normalized response spectrum (left) for the Canon Power Shot S110 NIR 

Camera, and the corresponding appearance of vegetation [53]. 

In 2017, the eBee SQ agricultural drone was used for all flights.  This drone is equipped 

with the multispectral Parrot Sequoia sensor (Figure 16).  This sensor contains a 16 megapixel 
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(MP) RGB camera and a 1.2 MP 4-band multispectral sensor that measures NIR, red edge, red, 

and green reflectance.  It has an upward-facing irradiance sensor to help offset the effects of 

various lighting conditions on the resulting imagery (Figure 16).  The irradiance sensor records 

the ambient light conditions in the same bands as the multispectral sensor.  The intensity of 

ambient light conditions, which vary depending on cloud cover and time of day, can then be 

corrected for during image post-processing by software such as Pix4D which can use the data 

from the irradiance sensor as part of its image processing algorithms [55].  This makes flight data 

collected on days with different global lighting conditions more directly comparable [56].   

 
Figure 16. (a) The eBee SQ main body sensor (left) and (b) the sunshine/irradiance sensor (right) 

[57]. 

The eBee SQ multispectral sensor collects red-edge reflectance data in addition to red 

and NIR.  Red-edge refers to a portion of the electromagnetic spectrum around 700 nm, where 

green vegetation shows sharp changes in reflectance [58].  This is a feature of green vegetation 

and is due to the presence of chlorophyll and the reflectance of NIR.  The red-edge allows green 

vegetation to be clearly distinguished from dead vegetation and non-vegetation in the 

surrounding environment.  Because it is a narrow spectral band, the red-edge is often measured 

indirectly by spectral indices that use combinations of red and NIR [58].  The spectral sensitivity 

of both the main body and sunshine irradiance sensors for the eBee SQ, including the red-edge 

band, are shown in Figure 17. 

a b 
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Figure 17. Spectral sensitivity of the eBee SQ’s irradiance sensor (left) and main sensor (right).  

The red-edge band is shown in purple, NIR in black [57]. 

The Sandy Field was flown at about 90 m above ground level (AGL) and had a 75% 

sidelap and 65% endlap, while the Tifton Field was flown at 36 m AGL with an 80% sidelap and 

65% endlap.  For both years, the flight control software used was senseFly’s eMotion Ag.  This 

software allows for the use of imported field boundaries and the specification of a desired ground 

resolution for generating a flight path.  The images collected during a flight are automatically 

geotagged by eMotion Ag; the final image mosaic is georeferenced using control targets placed 

in the field prior to data collection and located using RTK GPS [54], [59], [60]. 

Year Sensor Image Size  
Reflectance 

Bands 

Max 

fps 

Max 

Shutter 

Speed 

Weight 

w/o  

battery 

2016 

Canon Power 

Shot S110 

NIR 

12.1 MP  Red, Green, NIR f/2.0 1/2000s 153 g 

2017 

Parrot 

Sequoia Main 

Body Camera 

RGB: 16 MP 

Multispectral: 

1.2 MP 

 
Red, Green, Red 

Edge, NIR, RGB 
f/1.0 

Rolling 

shutter 
72 g 

Table 1. Comparison of sensors used for 2016 and 2017 flights [53], [57]. 
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2.3 Field Data Collection 

Before each flight, PVC quadrats were placed in the fields.  In 2016, the quadrats were 

PVC pipe with a larger outer frame (0.5 x 0.5 m; 0.25 m2) and a smaller inner frame (0.33 x 0.33 

m; 0.1 m2) centered inside as shown in Figure 18. The sampling frame design was to limit 

contaminated pixels from sunlight reflection [7].  In 2017 the quadrat sizes were larger (Table 2) 

and the different quadrat sizes were placed next to each other on the ground.  Ten quadrats were 

placed in each pasture in a W-transect and areas of low, medium, and high HM selected to 

facilitate regression along a range of HM. Ground control targets were also laid in the fields to 

help with georeferencing the resulting images.  An example of a PVC frame and a ground 

control target is shown in Figure 18.  The ground control targets are painted black and white for 

radiometric calibration in the image processing described in Chapter 3. 

 

Figure 18.  An example of the PVC quadrat frames and targets used for the 2016 flights. 

For the 2016 flights, GPS coordinates were collected by the TAMU AgriLife team with a 

handheld GPS to collect approximate locations of the quadrats which then had to be identified in 

the imagery post-flight.  A field map of planned quadrat positions was also available, and targets 

were placed to help identify quadrats in the imagery.  Figure 19 shows the field map used to help 



                                                

  

   

28 

 

place the Sandy Field quadrats; Figure 20 shows the field map used to help place the Tifton field 

quadrats. 

 
Figure 19.  The field map used to help place the quadrats for each of the Sandy Field flights. 

 
Figure 20. The field map used to help place the quadrats for the Tifton field. 
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For the 2017 flights, the quadrat sizes used were 1 m2 and 0.5 m2.  The quadrat sizes were 

enlarged to make the quadrats easier to identify in the imagery post-flight.  RTK GPS positions 

were collected for each corner of the quadrats, which were placed side-by-side in the field.  

Table 2 summarizes the field and flight parameters for 2016 and 2017; Table 3 summarizes the 

ground sample distance (GSD) for each flight.  The GSD is the average projected pixel size or 

spatial resolution of the images resulting from each flight; anything smaller than the GSD cannot 

be resolved by the sensor [61].  GSD is given for only the multispectral sensor in the 2017 

flights. 

Year UAS Sensor 
Flying 

Height (m) 

Quadrat Sizes 

(m2) 

Quadrat 

Positioning 

2016 eBee 
Canon Power Shot S110 

NIR 

Sandy: 120 

Tifton: 60 
0.5 Handheld GPS 

2017 
eBee 

SQ 

Parrot Sequoia 

Multispectral Sensor 

Sandy: 90 

Tifton: 36 

0.5 

1.0 
RTK GPS 

Table 2. A comparison of the UAS and field data collection parameters across the two field 

seasons. 

Flight Date 
Average GSD (cm) 

Sandy Field/Tifton Field 

6/21/2016 4.36/4.61 

7/29/2016 4.4/2.33 

9/1/2016 4.36/2.66 

10/21/2016 4.48/2.3 

5/24/2017 7.74/5.26 

7/3/2017 6.94/5.15 

8/4/2017 6.65/5.47 

9/15/2017 7.11/5.38 

Table 3. The GSD for each flight.  2017 GSD values are for the multispectral sensor only. 

The Texas A&M AgriLife team collected field data from inside each quadrat area after 

each flight.  Plant height was measured using three randomly chosen locations within each 
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quadrat and then averaged.  Plant height was measured from the ground to the top of the plant; 

the plant was not touched or manipulated for these measurements [62].  The forage within the 

inner frame of each quadrat was then sampled by hand-cutting the forage down to the ground 

level.  Each sample was weighed, then dried at 65° C until a constant weight was achieved.  The 

dried samples were then weighed and HM calculated.  Samples were then ground to at least 1 

mm in a Wiley Mill and analyzed for dry matter [63] and crude protein content by combustion in 

a Leco analyzer [64].  The resulting values for average plant height, HM, dry matter, and crude 

protein per quadrat, field, and flight were provided to the author in a spreadsheet for comparison 

with the UAS-collected data.  The method for comparing the field measurements and the UAS 

data is explained in the following chapter.  
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CHAPTER 3: METHODOLOGY 

3.1 UAS Image Processing 

After each flight, the data collected by the UAS must be processed to generate point 

clouds and reflectance maps.  The data was downloaded from the sensor (the Canon s110 for the 

2016 flights, and the Parrot Sequoia Multispectral sensor for the 2017 flights) and uploaded into 

Pix4D.  For both years, the ground control target positions were used both to help georeference 

the images and to help radiometrically calibrate the images.  This radiometric calibration corrects 

reflectance values in images based on the reflectance values recorded for the calibration ground 

control targets.  The 2017 Parrot Sequoia multispectral imagery was processed using Pix4D’s Ag 

Multipsectral processing template along with the calibration targets [65], [66]. 

The processing workflow followed by the software makes use of the SfM algorithms 

described in Chapter 1.  Keypoints found in the overlapping images are identified and used to 

find areas in overlapping images that match.  The matching keypoints along with the input GCPs 

are then used in automatic aerial triangulation and bundle block adjustment algorithms, resulting 

in a georeferenced orthomosaic, a densified point cloud, and a DSM [67]–[70].  The orthomosaic 

is then radiometrically corrected using calibration targets that were placed in the field.  These 

targets allow the orthomosaic to be corrected for variations in reflectance due to variations in 

incoming sunlight irradiance, vignetting, sensor response, and camera parameters [71].  For the 

2017 imagery, the software uses data from the sunlight/irradiance sensor along with the 

calibration targets to help radiometrically calibrate the orthomosaic [65].  The  

radiometrically-calibrated orthomosaic provides a more accurate reflectance map that can then 

be used to extract and measure the spectral response of objects captured in the UAS-collected 

imagery [71], [72]. 
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3.2 Ground Point Classification 

Point clouds generated from processed imagery collected by UAS provide a highly 

detailed snapshot of the terrain traversed during the UAS flight [70].  The detail of a UAS and 

SfM-derived, or UAS-SfM, point cloud can be comparable to the detail in a LiDAR-derived 

point cloud, with the key difference that UAS point clouds lack return information that can be 

used to classify the points in the point cloud [70], [73].  As discussed in Chapter 1, UAS-SfM 

generated point clouds do not penetrate vegetation like LiDAR and therefore can only capture 

the ground surface when it is visible to the sensor [73].  UAS-SfM-derived point clouds can 

provide both the detail and accuracy needed for highly accurate HM estimations, provided the 

ground surface is visible enough to allow for successful point cloud classification [74].  If the 

UAS-SfM point cloud is classified successfully, HM can be calculated by subtracting the DSM 

from the DEM, and plant height can be derived by looking at the elevation differences between 

the same two surfaces [74].  

In order to classify the UAS-SfM point cloud, the point cloud was imported into 

LAStools [75], a set of C++ scriptable tools that are able to efficiently handle large point cloud 

datasets.  LAStools has a set of tools designed for point cloud processing, including point cloud 

classification.  Initially the recommended sequence [76], shown in Figure 21, was used on the 

densified point cloud:  

 

Figure 21. Initial point cloud classification method using LAStools. 

The recommended sequence shown in Figure 21 represents a single iteration of 

processing the point cloud data.  The point cloud is first indexed, which creates an adaptive 
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quadtree of the data.  This quadtree allows data to be processed much faster as the points can be 

“found” by the algorithms much more quickly in subsequent classification routines [77].  Next 

the data is tiled.  Tiling creates smaller subsets of the data which also helps improve processing 

speed [78].  Sorting the points in their z-order within each tile acts like a vertical index [79].  

These first three steps in the process all help facilitate the classification algorithm by creating a 

vehicle by which the classification algorithm can traverse the densified point cloud quickly and 

improve the results of classification [76].   

The classification routine used in LASTools is based on a filtering algorithm that creates 

a Triangular Irregular Network, or TIN [80], and compares points from the UAS-SfM point 

cloud within a moving window.  In the absence of return information, the relative heights of 

points within this moving window are compared; the lowest points are classified as “ground” 

points.  The moving window is defined by the “step size” parameter.  The step size is the size of 

the moving window.  A step of 5 m will compare points within a 5 m area [81].  The difference 

between ground and non-ground points are defined by two additional parameters: the “spike” 

and “bulge.”  The spike parameter helps remove noise in the point cloud by removing points that 

are above or below the specified value.  For instance, a spike size of 0.5 m will remove up- and 

down-spike points that are above or below 0.5 m from their neighbors within the step [81].  

Finally, the bulge parameter constrains the tentative surface, defined by the TIN, being created in 

the algorithm [80].  The bulge defines how much the TIN can undulate up and down [81].  For 

instance, a bulge of 1.0 m will allow for ground points that create a surface that has undulations 
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no higher or lower than 1 m.  Any points that create a larger bulge in the TIN will not be 

classified as ground [81].  

The last step in the recommended sequence shown in Figure 21 merges the tiles used for 

processing into a new, classified point cloud [78].  Review of the results from this initial process 

showed a great deal of misclassified points.  While large features such as trees and buildings 

were correctly classified as non-ground points, most of the forage in the fields was incorrectly 

classified as ground.  The initial results precluded the use of the point cloud for creating a bare-

earth DEM, and for use of that DEM along with a DSM created from the same classified point 

cloud for measuring plant height and HM [74].  

In order to avoid misclassifying the field forage as ground, an iterative approach was 

used that followed the recommended sequence shown in Figure 21 but with progressively larger 

tiles, and progressively larger step, spike, and bulge parameters.   This approach removes  

non-ground points on progressively larger scale within the point cloud.  The misclassified points 

from the process shown in Figure 21 are a result of the local and relative comparison that is done 

by the classification algorithm.  In order to classify relatively low-lying points representing the 

forage in a field as non-ground, the step, spike, and bulge parameters must be defined so as to 

limit the relative comparison to only the bare-earth surface and the forage plants [81].  However, 

the classification algorithm must also be able to distinguish between the bare-earth surface and 

larger features, such as stands of trees and large buildings.  In short, a single step, bulge, or spike 

parameter cannot correctly classify both low-contrast changes in elevation, such as grasses 

against the bare ground, to higher-contrast changes in elevation, such as trees and buildings 
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against the bare ground.  In order to capture both large and small changes in elevation, an 

iterative approach was used and is shown in Figure 22. 

 

Figure 22.  The iterative classification workflow.  

 The iterative process is repeated three times, each time increasing the tile size, step size, 

spike size, and bulge size.  In the first iteration a very small tile size is used along with very 

small step, spike, and bulge parameters.  The small step size filters non-ground points in a very 

small area with high sensitivity to small differences in elevation.  The small step size will capture 

the lowest points within a very small moving window.  The purpose of this first iteration is to try 

and capture only the lowest points in areas of low relief, such as in the planted Tifton 85 field, 

where large areas are devoid of trees and only have low grasses.  The remaining two iterations 

serve to remove non-ground points from the initial classification pass by gradually increasing the 

step and tile size, and by increasing the spike and bulge tolerances.  As the tile size increases, 

artifacts along the edges of tiles are smoothed.  As the step size increases, relative heights 

between points are compared at a larger and larger scale, preserving ground points at a small 

scale, but removing them at larger scales.  For example, the first pass retains valid ground points 
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between rows in a planted field, while the second and third passes remove invalid ground points 

from low berms and treetops.  See Table 4 for the values used for each parameter in each 

iteration.  These values were determined by testing incremental changes in the number of passes, 

tile size, step size, spike and bulge sizes and comparing the resulting classified point cloud to the 

UAS orthomosaic to see if improvements in classification were achieved.  See Chapter 4 for an 

explanation of the results of these comparisons.  If large areas of forage in pastures were 

classified as ground, or if large non-ground features such as trees or buildings were classified as 

ground, the parameters were adjusted.  Additional iterations were added until improvements in 

the classification of the forage area of the fields were no longer apparent. 

Iteration Tile Size (m) Step (m) Spike (m) Bulge (m) 

1 250 1 0.05 None 

2 500 5 0.1 None 

3 1000 50 0.2 1 

Table 4. The parameters used for the three classification iterations. 

3.3 Digital Elevation and Surface Models 

The classified point clouds were imported into ArcGIS Desktop software to create  

bare-earth DEMs and DSMs.  The goal of creating these two surfaces from the point cloud is to 

use them in creating detailed terrain and slope models, and to derive measures of plant height 

and HM.  Ground points from the classified point clouds were used to create DEMs, which were 

created by generating a raster surface from the ground points in the classified point cloud.  The 

average point spacing of the point cloud was used to determine an appropriate raster cell size.  

The raster cell size was set to 1 m, slightly larger than the average point spacing in the point 

clouds, to help smooth out any gaps where the point spacing was larger than the average value.  

A binning algorithm was used, which uses a moving window similar to the step used in the 

classification algorithm [82].  The binning algorithm was set to use only the lowest point within 
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the moving window to further help capture only the bare-earth points for the output DEM.  A 1 

m window size was used for the binning method as the output DEM resolution was set to  

1 m so the value used for a single raster cell would reflect the elevation within the same area.  

Finally, nearest neighbor interpolation was used to create the output DEM, which assigns raster 

cell values based on the nearest point value to the raster cell center [83].  Figure 23 and Figure 24 

show examples of the DEM and DSM derived from the UAS-SfM point cloud, respectively.   

 
Figure 23. The UAS-SfM-derived digital elevation model for the October 2016 Tifton field 

flight. 
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Figure 24.  The UAS-SfM-derived digital surface model for the October 2016 Tifton field flight. 

 Attempts to improve the DEM surface so it could be used to generate a slope map were 

made by applying focal statistics to the DEM surface.  The focal statistics used an average of 

values in a moving window across the DEM surface in an attempt to smooth the DEM [84].  This 

approach was used with a UAS-SfM DEM surface that was generated from the July 29 flight 

over the Brush field.  Contours were generated at 0.1 m intervals to help visualize the smoothed 

DEM surface.  The smoothed UAS-SfM-derived DEM for the Brush field is shown in Figure 25 

with contours in 0.5-m intervals to help visualize the topographic surface. 
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Figure 25. The smoothed DEM for the July Brush Field flight. 
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Figure 26. The smoothed DEM for the July Brush Field flight, visualized with contours. 

3.4 Quadrat Identification 

 The PVC quadrats placed in the field before each flight must be identified in the UAS 

orthomosaic. The location of the quadrats is critical for comparing UAS-derived measurements 

from the classified point clouds, DEMs, and vegetation index rasters (described in the following 

section) with the measurements taken in the field and processed in the lab.  The UAS-derived 

estimations of plant height and biomass, along with the spectral indices calculated from the 
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radiometrically-corrected UAS orthomosaic, are compared to the field measurements taken 

within each quadrat to see if the UAS-derived measurements can predict or significantly 

correlate with the field measurements. 

 For the 2016 field season, quadrat locations were heads-up digitized using the handheld 

GPS locations combined with visual inspection of the orthomosaic within about 3 meters of each 

GPS point.  Only 60% of the quadrats could be positively and unambiguously identified from the 

2016 field season.  While field maps of the quadrats were available (Figure 19 and Figure 20), 

and approximate GPS positions were provided for almost all the 2016 flights, there were many 

instances where the quadrat simply wasn’t visible in the orthomosaic.  The height of surrounding 

vegetation and the flying height of the UAS were some of the factors that affected the visibility 

of quadrats in the orthomosaic. 

 

Figure 27.  Quadrat layout for the Sandy Field.  Heads-up digitized from the June 2016 data. 

Quadrats that were identifiable in the 2016 orthomosaic were heads-up digitized by 

specifying the known length and deflection (90 degrees) of each quadrat side.  Figure 27 shows 

the heads-up digitized quadrats from the June 2016 flights on the June 2016 orthomosaic.  Two 

quadrat sizes were used in 2016, one inside the other, modeled after the 2014 Wang study.  Only 
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the outer, larger quadrat (0.5 m2) is visible in the 2016 imagery.  The smaller 0.1 m2 within the 

0.5 m2 frame was not visible in any of the orthomosaics.   

Significant pixel contamination is present in the 2016 quadrats identified in the 

orthomosaic.  This pixel contamination creates pixels with high reflectance values due to the 

high reflectivity of the quadrat frames, which were made of white PVC pipe.  Pixel 

contamination creates areas of very high pixel values due to the reflection of light off the white 

plastic piping, which obscures the reflectance signatures of the vegetation in that pixel area.  

These pixels are “contaminated” because their spectral responses do not represent the underlying 

vegetation well, and so are not useful for analysis.  Pixel contamination was significant in the 

2016 flights.  To help remove its effects, the interior areas that appeared to be least affected by 

the reflection of sunlight off the PVC pipes were heads-up digitized as well.  

  

Figure 28 (a). The outline of a quadrat is shown here in red (left).  The white pixels beneath it 

represent both the quadrat PVC piping and the reflective halo of pixel contamination surrounding 

the piping. (b) The interior traced quadrat area shown in bold black within the square quadrat 

boundary (right).  Raster pixels represent NDVI values. 

Identification of contaminated pixels was subjective, so contamination may have been 

better or worse than determined for this analysis.  Contaminated pixels were identified via a 

visual inspection of each quadrat area.  Pixels at or near the quadrat boundary that had a very 
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high value relative to the center of the quadrat were excluded.  Since contamination gradually 

decreased away from the quadrat piping, however, there are likely varying effects of pixel 

contamination in the areas that were retained.  This was not controlled for in the final analysis, 

and could benefit from a method that controls for pixel contamination, which may potentially 

yield different results.    

After creating polygons for the quadrat frames, inner areas with little or no pixel 

contamination were heads-up digitized to create polygons.  These polygon areas were used to 

extract the underlying raster data for analysis.  Table 5 contains a summary of the number of 

quadrats identified for the 2016 flights. 

Flight Date Field Name GPS Points Available Quadrats Identified 

6/21/2016 Sandy Field 10 10 

6/21/2016 Tifton Field 0 0* 

07/29/2016 Sandy Field 10 0** 

07/29/2016 Tifton Field 10 08 

09/01/2016 Sandy Field 10 05 

09/01/2016 Tifton Field 10 0** 

10/21/2016 Sandy Field 10 9*** 

10/21/2016 Tifton Field 10 10 

Table 5. Summary of quadrat identification for 2016 flights. 

*Quadrats were visible but numbers could not be assigned because GPS data was not 

available/field map did not align with what was visible in the imagery. 

**Quadrats were not visible. 

***GPS location for Quadrat 1 was not located over reflectance image. 

To address the issue of locating and identifying quadrats in the flight reflectance images, 

RTK GPS points of each quadrat corner were collected during the 2017 field season.  A lower 

flying height was used for the 2017 flights to facilitate confirming quadrat locations and 

identifying uncontaminated pixels (Table 2).  This produced consistent results for each flight, 

with no missing data from quadrats not visible in the orthomosaic.  The 2017 quadrats were then 
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easily digitized using the RTK GPS control points as quadrat corners rather than as points of 

reference for a visual search.  

Two quadrat sizes were used for the 2017 flights.  Quadrats were placed side-by-side in 

the field.   Quadrats were heads-up digitized for the month of May, as this month only had a 

single GPS location for each quadrat available.  For the July, August, and September 2017 

flights, RTK GPS locations of the quadrats were provided.  The polyline features derived from 

the RTK GPS quadrat corner locations were converted to polygons to represent the quadrat 

areas.  Interior polygons were then created for all quadrats in each flight that excluded pixels 

contaminated by the quadrat piping, following the same visual inspection procedure used for the 

2016 flights to exclude contaminated pixels. 

Field Name Month GPS Points 

Available 

Quadrats 

Identified  

(0.5 m2) 

Quadrats 

Identified  

(1.0 m2) 

Sandy Field May 10 10 10* 

Tifton Field May 10 10 10 

Sandy Field July 0** 10 10 

Tifton Field July 0** 10 10 

Sandy Field August 0** 10 10 

Tifton Field August 0** 10 10 

Sandy Field September 0** 10 10 

Tifton Field September 0** 10 10 

Table 6. Summary of quadrat identification for 2017 flights. 

*GPS points give general location of quadrats. Quadrats visible in imagery. Only two sizes of 

quadrats were used. 

 **GPS points were not provided. Quadrat locations were given directly as polyline features. 

3.5 Vegetation Indices 

As discussed in Chapter 1, vegetation indices, or VIs, are a subset of spectral indices 

developed to measure various biophysical properties of plants, such as biomass, chlorophyll 

content, and nitrogen content [9], [85], [86].  Different VIs are suitable for measuring different 
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plant properties.  NDVI, also discussed in Chapter 1, is generally a good indicator of plant 

biomass, as is NGRDI (Normalized Green-Red Difference Index) [86], [87].  Green NDVI, or 

GNDVI, has also been shown to correlate well with plant biomass and with nitrogen content and 

is more sensitive to different concentrations of chlorophyll than NDVI [88], [89].  Enhanced 

NDVI was developed to improve the performance of the NDVI index for digital cameras, which 

respond differently to reflected light than the color infrared film first used with NDVI [90].  

These four VIs—NDVI, GNDVI, NGRDI, and ENDVI—were selected for testing correlations of 

UAS-derived VIs with field measurements of plant biomass and crude protein content [91].  

Table 7 shows the equations that define each of these VIs. 

Vegetation 

Index 
Equation Description 

NDVI 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

Normalized Difference Vegetation Index. 

Provides a measure of biomass/chlorophyll 

content [86], [92]. 

GNDVI 
(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 

Normalized Difference Vegetation Index 

using the green band instead of the red. 

Also provides a measure of 

biomass/chlorophyll content, but can be 

more effective at later stages of growth 

[89], [93]. 

NGRDI 
(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)
 

Normalized Green-Red Difference Index 

[86] 

ENDVI 
(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) − (2 ∗ 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) + (2 ∗ 𝑅𝑒𝑑)
 Enhanced NDVI Index [86], [90] 

Table 7. Vegetation indices used and their associated equations. 

For the 2016 flights, the VI rasters were created after verifying the reflectance image 

band identities.  Each orthomosaic band was inspected over healthy vegetation to help verify the 

band identities.  Figure 29a shows the three-band orthomosaic produced from one of the 2016 

flights.  Figure 29b shows the NIR band alone, over healthy vegetation.  Healthy vegetation 

appears bright in the NIR band.  Once the bands were identified, each VI was computed, 
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generating a new raster image.  For the 2017 flights, the bands were already separated and 

identified after being radiometrically corrected in Pix4D, so band verification was not necessary.  

Additionally, the 2017 flights included the red-edge band (Table 1).  The VIs were calculated 

using both the NIR and red-edge bands, except for NGRDI, which does not include the infrared 

band. 

  

Figure 29.  (a) An example of the false-color image created by combining the red, green, and 

NIR bands (left). (b) Green vegetation appears brighter in the NIR band (right). 

The interior traced polygons created in the quadrat identification procedure defined the 

areas of the VI rasters that would be processed and compared to the field-collected data.  

Statistics were calculated for the interior of each quadrat for each VI raster, including the 

minimum, maximum, mean, and standard deviation of the VI raster cells values within each 

quadrat.  The mean values from the VI raster cells, considered to be best representative of the 

quadrat area’s spectral response, were used with the field measurements for statistical analysis.  

Correlation was calculated in order to see if the VIs and field measurements are linearly related, 

and to what degree.  Linear regression was calculated to assess whether the VIs could be used to 

estimate or predict field measurements with any certainty.  The results are discussed in the 

following chapter. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 UAS-SfM Point Cloud Classification 

In order to evaluate the success of the UAS-SfM point cloud classification algorithm and 

input parameters such as tile size, step size, spike size, and bulge, five 3 m2 test areas were 

created for each field.  These test areas capture representative ground and non-ground surfaces 

such as trees, buildings, and forage in fields. Statistics were generated for each flight using both 

the raw and classified point clouds for these representative test areas.  Table 8 contains 

descriptions of the test areas for both the Sandy and Tifton fields.  Figure 30 shows images of the 

Sandy Field test areas; Figure 31 shows images of the Tifton Field test areas. 

Sandy Field Test 

Areas 

Tifton Field Test 

Areas 

1.  Field 1.  Building Roof 

2.  Tree Stand 2.  Tree Stand 

3.  Pond 3.  Lone Tree 

4.  Lone Tree 4.  Planted Field 

5.  Building Roof 5.  Adjacent Field 

Table 8. Summary of point cloud evaluation test areas for each field. 

The total number of points classified as ground points were compared to the original 

number of points in the point cloud within the test area.  See Table 2 to review the specifications 

of the eBee UAS and sensor.  Only the 2016 flights were evaluated; based on results of the 2016 

evaluation discussed in this and the section 4.1.2, the 2017 UAS-SfM point clouds were not 

evaluated. 
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Figure 30. The Sandy Field test areas: (a) Field; (b) Tree Stand; (c) Pond; (d) Lone Tree; (e) 

Building Roof. 
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Figure 31. The Tifton Field test areas: (a) Building Roof; (b) Tree Stand; (c) Lone Tree; (d) 

Planted Field; (e) Adjacent Field 
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The ratio of ground to non-ground points was used to evaluate the point cloud 

classification in the test areas where the correct point classification is known a priori.  The results 

are shown for the Sandy field (Figure 32) and for the Tifton field (Figure 33).  In general, the 

non-ground test areas—tree stand, pond, lone tree, and building roof—successfully excluded 

non-ground points, with some significant misclassifications for the September 2016 flight of the 

Lone Tree test area in both the Sandy and Tifton fields.  The Adjacent Field test area was 

available in the Tifton data and was used for general comparison against the Planted Field 

results.  The fields were difficult to evaluate without ground truth data.  Generally, the fields 

would include both ground and non-ground points; the forage plants, however, should ideally not 

be classified as ground as they are of primary interest for analysis.  For this reason they were 

included as part of the point cloud classification evaluation. 

 

Figure 32: Percent ground points for the 2016 Sandy Field flights in the test areas.  
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Figure 33: Percent ground points for the 2016 Tifton Field flights in the test areas. 

The Field test area was of particular interest for the study as it was used for analyzing the 

point cloud structure and the vegetation indices.  In both the Sandy and Tifton fields, there is a 

significant increase in the number of Field ground points as the growing season progresses.  

While both the Sandy and Tifton fields show a greater concentration of ground points in the 

Field test areas, there is a significantly larger proportion of ground points in the Tifton field, 

especially during the October flight.  This may be due to the fact that the Tifton field was flown 

at almost half the altitude of the Sandy field, due to its smaller size.  Figure 34 and Figure 35 

summarize the point counts and point densities per test area for the Sandy and Tifton fields, 

respectively. 
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Figure 34. Point counts and densities per test area for the 2016 Sandy Field flights. 

 

Figure 35. Point counts and densities per test area for the 2016 Tifton Field flights. 
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Based on the number and proportion of ground points in each test area, the iterative 

ground point classification algorithm consistently classified larger features such as trees and 

buildings as non-ground.  This was true even in areas where trees completely filled the step size, 

as with the Tree Stand test areas.  For test areas where ground points are present in the test area, 

additional ground-truth information would be required to determine whether the classification 

was successful.  This is particularly true for the Field test areas, as they are of principle interest 

for the study.  The iterative classification algorithm did not completely identify the field test 

areas as ground; this is ideal as there must be a distinction between the forage in the pastures and 

the ground beneath them in order to use the point cloud to derive accurate DEM and DSM 

surfaces that can be used to estimate HM and plant heights.  Additional ground-truth information 

regarding the location and proportion of forage in each test area would help determine if the 

algorithm successfully captured only forage as non-ground points in the field test areas. 

4.1.2 Canopy Height Models 

 UAS-SfM point clouds cannot capture ground surface that is not visible to the sensor.  As 

a result, the classified point cloud is still a mixture of ground and vegetation even when the 

classification algorithm is successful at only capturing the lowest points within a moving 

window.  This creates significant issues with generating a valid DEM.  When the ground surface 

is inconsistently visible or obscured in the imagery, the classified point cloud can represent a 

false topography that combines the actual ground surface with low vegetation.   

This was demonstrated by creating a difference raster or canopy height model (CHM) 

[94] from the DEM and DSM generated from the UAS-SfM point cloud (as described in Chapter 

3).  The CHM was created by subtracting the DEM from the DSM [95].  The result is a different 

surface that, assuming the DEM surface accurately represents the underlying  
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bare-earth ground surface, models the height of vegetation [94].  The cell values of a CHM 

represent the elevation of the DSM above or below the DEM.  Where the difference raster has a 

value of zero (0), the DSM and DEM have the same elevation.  An example of a CHM created 

from the UAS-SfM-derived DEM and DSM (Figure 23 and Figure 24) from October 2016 is 

shown in Figure 36.  Figure 36 shows large portions of the CHM where its cell values are zero, 

indicating that the canopy height is also zero and thus these areas should represent the bare-earth 

surface.  The areas of greatest canopy height appear along the edges of the field, particularly 

where there are trees.   

 

Figure 36. The difference surface created from the October 2016 UAS-SfM-derived DEM and 

DSM. 

In order to better evaluate the ability of the UAS-SfM-derived CHM to correctly estimate 

plant height, the average value for the CHM within each quadrat was compared to the average 

plant height measured for each quadrat in the field (Figure 37).  The plant heights from the 



                                                

  

   

54 

 

canopy height model underestimate the measured heights from the quadrats.  This is due to the 

fact that the UAS-SfM-derived DEM surface is essentially hovering above the actual ground 

surface.  As the DEM had an overall higher elevation, when subtracted from the DSM it 

produced smaller height values when compared to the measured plant heights.  

 

Figure 37.  The measured plant heights vs difference raster heights for the interior quadrat areas 

(October 2016 flight). 

4.1.3 Vegetation Indices vs Field Measurements 

As explained in Chapter 3, four VIs were calculated from the radiometrically-corrected 

UAS-SfM orthomosaic.  Table 7 contains the equations used to calculate these VIs.  The mean 

VI raster value was extracted from each quadrat, and linear regression analysis was performed 

using these mean VI values and each field measurements.  No non-linear trends in the data were 

observed.  A true month-to-month comparison of the fields is not possible with the 2016 data, as 

the quadrats were not consistently captured.  The June 2016 flights, for instance, only resulted in 

data for the Sandy field as GPS data were not collected for the Tifton quadrats and the quadrat 

piping was not visible in the imagery.  The 2016 flights resulted in at least one field from each 
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flight date providing data for analysis.  The 2017 data consistently captured the quadrats, largely 

due to the fact that the quadrats were located using RTK GPS in the field, allowing for 

comparison between fields for each flight.  Table 5 and Table 6 summarize the number of 

quadrats identified for the two field seasons.  

Figure 38 shows the relative areas available for analysis from the 2016 and 2017 flights, 

based on both the number of quadrats available for analysis and the uncontaminated area within 

each quadrat.  The difference in uncontaminated quadrat area available for analysis was a key 

consideration when interpreting and comparing the results from the 2016 and 2017 flights.  A 

monthly comparison is included in Appendix 1 that shows the areas available for analysis from 

each flight alongside the r2 values.   

 
Figure 38. Uncontaminated areas (m2 and %) for the 2016 and 2017 quadrats. 
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2016 Results 

 Of the four field measures and VIs examined in the 2016 flights, the strongest correlation 

occurred in the Sandy field flights for the crude protein field measure (Figure 39).  This field 

measure had relatively strong positive correlations with all the VIs.  The VIs overall had 

inconsistent correlations between the Sandy and Tifton fields in the 2016 flights.  The Sandy 

field shows a relatively strong correlation between all four VIs with the crude protein field 

measurements, but weak positive and even negative correlations with average plant height and 

HM.  Dry matter (%) had weak positive correlation in the 2016 Sandy field data, but a weak 

negative association in the Tifton field data.  The crude protein field measure had mostly 

negative correlations in the Tifton field flights.  There was very little consistency of correlation 

between the two fields for the 2016 flights.  Except for the Sandy field crude protein results, the 

field measures had weak correlations with the VIs in the 2016 data.  It is interesting to note that 

the HM field measures consistently had a weak negative association with most of the vegetation 

indices in the 2016 flights, but a stronger positive correlation for the NGRDI VI that was present 

in data from both fields.  In general, however, the correlation between field measures and 

vegetation indices in 2016 is inconsistent.   
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Figure 39. Correlation between field measures and vegetation indices by field for the 2016 

flights. 

 

Regression analysis was done for all of the 2016 flights by combining each of the flights 

and separating the results by field measure and VI.  In this regression analysis done for the year 

as a whole there are no significant regressions between any of the VIs and the field measures.  

Moreover, the low r2 values indicate that very little variability in each VI accounts for the 

variability observed in the field measurements.   Table 9 has the r2 values for each VI and field 

measure, with the VIs ranked in order of their mean r2 value.  Note that P-values for the 

regression models (Table 9) are not significant when taking the average of both the Sandy and 

Tifton fields.  See Figure 41 for results individualized by field. 
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%DM 0.17 0.59 
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%DM 0.26 0.52 

Average Plant Height (cm) 0.29 0.68 

CP (%DM Basis) 0.19 0.37 

HM kg/ha 0.09 0.70 

NDVI 0.20 0.51 

%DM 0.28 0.53 

Average Plant Height (cm) 0.25 0.56 

CP (%DM Basis) 0.16 0.32 

HM kg/ha 0.09 0.61 

GNDVI 0.17 0.37 

%DM 0.21 0.57 

Average Plant Height (cm) 0.16 0.38 

CP (%DM Basis) 0.11 0.24 

HM kg/ha 0.19 0.32 

Table 9. Performance of VIs overall for the 2016 flights for both the Sandy and Tifton fields. 

The p-values indicate the significance of the regression models between each of the VIs and the 

field measurements. 

Certain months had much better individual performance, however; these values can be 

seen in the monthly analysis in Appendix 1.  Figure 40 shows the results of the yearly analysis 

by field, VI, and field measure.  In the regression analyses for the Tifton field, average plant 

height accounted for the most variation when analyzed with any VI.  However, this variation was 

still below 50%, and all regressions were nonsignificant.  The regression model for the crude 

protein field measure in the Sandy Field (Figure 41) was the most significant (P < 0.05), and 

performed comparably well with all vegetation indices.  The variation accounted for with this 

field measure was still relatively low (< 30%).   
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Figure 40. Performance of each of the vegetation indices for each field measurement by field for 

the 2016 flights. 

 

 
Figure 41. P-values resulting from the linear regression analysis for the 2016 flights. 
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Monthly results from each flight are shown in Appendix I.  Each figure shows the results 

of the regression analyses for a single field measure and all the VIs, by month and field.  The 

figures for the 2016 flights— Figure 47, Figure 49, Figure 51, and Figure 53— generally show 

the highest associations between VIs and field measurements for the June 2016 Sandy field 

flights.  This can be seen with HM (Figure 47, Appendix I), average plant height (Figure 49, 

Appendix I), and % Crude Protein (CP) (Figure 53, Appendix I).  This was true except for the  

% Dry Matter (DM) field measurement (Figure 51), which had very strong associations in the 

September 2016 Sandy field flight.  There were no identifiable quadrats for the Tifton field for 

that same month for comparison.  In general, the Tifton flights in 2016 had the strongest 

associations during the month of July.  There were no identifiable quadrats for the Sandy field 

for July for comparison in 2016.  Interestingly, the Tifton flights in 2016 had almost no 

association between any of the VIs and HM (Figure 47), and extremely weak associations with 

% CP (Figure 53), but the Sandy field flights in 2016 show a very different pattern with r2 values 

around 0.5 for these field measurements and several VIs. 

2017 Results 

The 2017 results showed significantly stronger correlations.  Figure 42 shows these 

correlation values.  The correlations were strongest for HM.  The HM correlations were 

consistently positive for all vegetation indices between both the Sandy and Tifton fields.  The 

NDVI vegetation index provided the most consistent positive association with HM between the 

two fields. Crude protein had relatively strong correlations with all vegetation indices as well, 

but only in the Sandy field; the Tifton field again showed the opposite trend.  DM and average 

plant height have weak negative correlations in 2017, nearly opposite to the year before, but are 

more consistent between the two fields in this season.   
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Figure 42. Correlation between field measures and vegetation indices by field for the 2017 

flights.  The VIs using the red-edge band are indicated using a “RE” prefix. 

Linear regression analysis was done for all the 2017 flights combined.  The results were 

separated by field measure and VI.  The 2017 regression models had lower average r2 values, but 

within each VI, these r2 values were fairly consistent (Table 10).  For all regressions, these low r2 

values indicate considerable scatter of data points around the regression line, and further indicate 

that very little variation in the field measurements are explained by regression the VIs.  

However, there are significant linear relationships between the VIs and field measurements that 

indicate some of the VIs can potentially be used to predict the field measurements, but with low 

accuracy.   

Only GNDVI and its red-edge version had significantly weaker associations than the 

other VIs (Table 10).  Table 10 has the r2 values for each VI and field measure, with the VIs 

ranked in order of their mean r2 value.  Note that the p-values for the regression models taking 

the average of both fields and quadrat sizes for all 2017 flights (Table 10) are much more 

significant than in 2016. 
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Vegetation Index & 

Field Measure 
r2 P 

ENDVI (Red Edge) 0.16 0.71 

%DM 0.11 0.45 

Average Plant Height (cm) 0.09 0.71 

CP (%DM Basis) 0.20 0.02 

HM kg/ha 0.25 P < .0001 

ENDVI 0.16 0.27 

%DM 0.11 0.41 

Average Plant Height (cm) 0.09 0.48 

CP (%DM Basis) 0.19 0.18 

HM kg/ha 0.25 P < .0001 

NDVI (Red Edge) 0.16 0.27 

%DM 0.11 0.36 

Average Plant Height (cm) 0.08 0.70 

CP (%DM Basis) 0.19 0.03 

HM kg/ha 0.25 P < .0001 

NDVI 0.15 0.26 

%DM 0.11 0.34 

Average Plant Height (cm) 0.08 0.44 

CP (%DM Basis) 0.18 0.24 

HM kg/ha 0.25 P < .0001 

NGRDI 0.15 0.24 

%DM 0.12 0.24 

Average Plant Height (cm) 0.12 0.67 

CP (%DM Basis) 0.15 0.04 

HM kg/ha 0.22 P < .0001 

GNDVI 0.12 0.32 

%DM 0.12 0.27 

Average Plant Height (cm) 0.06 0.54 

CP (%DM Basis) 0.12 0.39 

HM kg/ha 0.17 0.10 

GNDVI (Red Edge) 0.10 0.18 

%DM 0.09 0.18 

Average Plant Height (cm) 0.05 0.49 

CP (%DM Basis) 0.11 0.02 

HM kg/ha 0.14 0.01 

Table 10. Performance of VIs overall for the 2017 flights.  The p-values indicate the significance 

of the regression models between each of the VIs and the field measurements. 
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The HM regression models only account for 25% of the total variation (P < 0.05); 

Appendix 1, however, shows that some individual flights produced much higher r2 values.  The r2 

values and p-values for the regression analysis of the four field measures and VIs for 2017 are 

shown in Figure 43 and Figure 44, respectively.   

 
Figure 43. Performance of each of the vegetation indices for each field measurement by field for 

the 2017 flights. The VIs using the red-edge band are indicated using a “RE” prefix. 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

%DM Average

Plant Height

(cm)

CP (%DM

Basis)

HM kg/ha %DM Average

Plant Height

(cm)

CP (%DM

Basis)

HM kg/ha

Sandy Tifton

V
eg

et
at

io
n
 I

n
d

ic
es

 M
ea

n
 r

2

Laboratory Measures by Field (2017)

ENDVI ENDVI (Red Edge) GNDVI GNDVI (Red Edge)

NDVI NDVI (Red Edge) NGRDI NGRDI (Red Edge)



                                                

  

   

64 

 

 
Figure 44. P-values resulting from the linear regression analysis for the 2017 flights. 
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month of May in the Tifton field, but relatively weak associations for the month of September in 

both fields (Figure 48).  This contradicts the 2016 result where September had a relatively 

stronger association for HM with both GNDVI and NGRDI in the September 2016 Sandy field 

flight, and almost no association at all for any month in the 2016 Tifton field flights.  The 2017 

flights showed weak associations for all months and both fields for average plant height (Figure 

50).  %DM likewise had weak associations throughout the year in both fields with all VIs 

(Figure 52).  %CP, on the other hand, showed stronger associations around 0.5 in the 2017 July 

and August Sandy field flights (Figure 54). 

Combined Results 

Filtering the results of the regression analysis for both years, both fields, and all quadrat 

sizes to consider only those results where P < 0.05, only results from the 2017 flights remain.  

Table 11 shows the r2 and regression equation p-values for all flights where P < 0.05.  The 

NDVI and ENDVI indices calculated with a red-edge appear to have a slight advantage over the 

rest of the VIs, particularly with the crude protein and HM field measurements.   

Vegetation Index & 

Field Measure 
r2 P 

ENDVI (Red Edge)     

CP (%DM Basis) 0.2 0.02 

HM kg/ha 0.25 P < .0001 

ENDVI     

HM kg/ha 0.25 P < .0001 

NDVI (Red Edge)     

CP (%DM Basis) 0.19 0.03 

HM kg/ha 0.25 P < .0001 

NDVI     

HM kg/ha 0.25 P < .0001 

NGRDI     

CP (%DM Basis) 0.15 0.04 
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HM kg/ha 0.22 P < .0001 

GNDVI (Red Edge)     

CP (%DM Basis) 0.11 0.02 

HM kg/ha 0.14 0.01 

Table 11. Results filtered to display only those results whose p values are < 0.05.  Only the 2017 

flights generated results where P < 0.05.   

Figure 45 shows the regression plot (P < .0001) for HM and red-edge NDVI for the 2017 

Sandy Field flights for the 1 m quadrat size.  Figure 46 shows the regression plot (P < .0001) for 

crude protein and ENDVI for the 2017 Sandy Field flights for the 1 m quadrat size.  For both 

plots, the scatter of data points around the least squares regression line are reflected in the low r2 

values. 

 

Figure 45. Regression plot and marginal histogram of NDVI using the red-edge band and HM for 

the 2017 Sandy Field flights using the 1m quadrat size.   
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Figure 46. Regression plot and marginal histogram of ENDVI and crude protein for the 2017 

Sandy Field flights using the 1m quadrat size.   

4.2 Discussion  

4.2.1 UAS-SfM DEM Products for Grazing land Management 

 The UAS-SfM-derived DEMs created for this study were of limited utility for generating 

an accurate CHM due to the fact that the ground surface could not consistently be capture by the 

sensor.  Capturing the ground surface using a UAS will pose a challenge depending on the time 

of year and the unique topography being capture.  For instance, the Brush field DEM (Figure 

25), produced a smoother-appearing surface than the Tifton field DEM (Figure 23).  This is 

largely due to the fact that the Brush field has less dense vegetation and more areas where the 

ground surface was visible to the sensor.  The variation in these two fields suggests that  

UAS-SfM-derived DEMs will necessarily be inconsistent in their ability to capture the ground 

surface, and of limited utility for generating CHMs. 
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 As the UAS-SfM DSM captures a great deal of detail and contains the primary data of 

interest—that is, it captures the vegetation canopy—it would be possible to use a UAS-SfM 

DSM in conjunction with a DEM acquired using a LiDAR sensor that could more easily capture 

the ground surface, regardless of vegetation cover.  Another option, at least for planted fields, 

would be to have UAS flights specifically for the purpose of capturing DEM data just after hay is 

harvested [95].  It may be that flights conducted during the winter are better able to capture the 

bare-earth surface without the aid of a LiDAR sensor.  The DEM would need to be of adequate 

resolution in order for the canopy heights to retain the accuracy of the DSM [95]; estimates using 

lower-resolution DEMs may still be useful for grazing land management purposes, however, and 

could be a worthwhile target for future research.  

4.2.2 UAS Vegetation Indices for Forage Estimation 

Comparison of Flights 

Overall the quality and quantity of the data captured in 2017 was much improved for the 

purpose of this study.  Most importantly, the quadrat locations were consistently captured using 

RTK GPS.  This ensured that every flight yielded usable data.  In addition to consistently 

locating quadrats, the largest quadrat size was twice the size of the largest 2016 quadrat, and the 

two quadrat sizes were placed adjacent to one another in the field instead of nesting or 

superimposing the frames.  Larger quadrats with no interior piping frames provided a much 

greater area available for analysis with less pixel contamination.  

Figure 38 shows the disparity between the 2016 and 2017 flights in terms of the areas 

available for analysis.  The 2017 flights had two visible quadrat sizes and far less pixel 

contamination.  The 2016 flights not only had fewer visible quadrats, but the amount of pixel 

contamination was not only visibly more significant but likely had a strong impact on the results 
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of the analysis.  The effect of soil background on spectral response has been shown to be 

significant [85], [96].  Lighter-colored soils have been shown to reduce NDVI values, so it may 

be that the PVC piping of the quadrats behaved like a highly-reflective, light-colored soil [85].  

Adding to the complexity, soil brightness has been shown to affect VIs differently, depending on 

the spectral bands used [96].  Along with the relatively small area available for analysis, mixed 

spectral response from vegetation, soil, and the PVC quadrat piping may explain the seemingly 

erratic results from the 2016 flights.   PVC quadrat piping was used again in 2017, but the 2016 

flights used smaller quadrats where the impact of the quadrat piping on the spectral response 

may have been greater. 

In this study, both the underlying soil types and the material used to create the quadrats 

impacted the results.  While the effect of the spectral response of the PVC piping was somewhat 

ameliorated by tracing the interior of the quadrat areas to exclude visually affected pixels, it is 

not known to what extent the PVC quadrat pipping had on the results.  Since dark-colored soils 

can likewise impact the results of VIs, it may be that any material used to outline a quadrat will 

impact the quadrat’s spectral response.  Results could be improved by placing non-reflective 

markers at quadrat corners located by RTK GPS.  Then a quadrat frame could be placed using 

the corner markers for a guide after each flight to facilitate the field measurements. 

Finally, the 2017 flights used an irradiance sensor to help control for variations in 

lighting conditions, while the 2016 flights did not.  The impact of the lighting conditions on the 

2016 VI results are unknown, but the use of the irradiance sensor and the accompanying 

radiometric corrections to the orthomosaic used to create the VI rasters allow for more consistent 

results [97].  
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VI Assessment 

Referring back to Table 9 and Table 10, there was no one VI that had exceptionally better 

performance than the others.  In 2016, NGRDI, ENDVI, and NDVI had comparable mean r2 

values when considering all field measurements.  NGRDI and ENDVI associated most strongly 

with average plant height (r2 of 0.34 and 0.29, respectively) while NDVI had its strongest 

associations with %DM in the 2016 flights.  GNDVI was the weakest in the 2016 flights (Table 

9), although it associated more strongly with HM in the 2016 flights than the other three VIs (r2 

= 0.19).  None of these average r2 values explain even 50% of the variations in the 

measurements, although some months had very high r2 values in 2016, as discussed in the 

previous section (Appendix I). 

In 2017 the average r2 values are lower (Table 10), with the highest being 0.16 for 

ENDVI and its red-edge counterpart, and the red-edge NDVI.  Overall the VIs in 2017 

performed similarly, with average r2 values of 0.15 or 0.16 for all lab measurements.  The  

red-edge VIs performed almost identically to their non-red-edge counterparts, seeming to 

perform slightly better with the % CP field measurements with the ENDVI and NDVI indices.   

As in 2016, some months had much higher than average correlations.  The May 2017 flight of 

the Tifton field had r2 values approached 0.7 for the ENDVI and NDVI indices with the HM 

field measurement.   

In their 2014 paper, Wang et al [7] showed decreasing performance of NDVI at 

predicting HM with increased flying height.  A low flying height, on the other hand, produced 

very strong associations in their regression models (r2 = 0.94, p<0.01) [7].  While the opposite 

trend was observed in this study—flying height was lowered between 2016 and 2017, but the 

average r2 values decreased for all VIs and field measurements—many other parameters changed 
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as well, including the quadrat size and sensor.  Future work may target lower flying heights with 

the eBee SQ sensor to see if the predictive power of the VIs increases at lower flying heights.   

Field Measurements 

 It is not clear from the data why a difference exists between the Sandy and Tifton fields 

in the results of the regression analysis for the same VI and field measurement combinations.  

Some important differences may be accounted for by the different forage species in each pasture 

and the management.  The Sandy field was planted nearly 50 years ago and is not harvested 

annually for hay the way the Tifton field is.  This could create significant differences in the 

growth habit and overall forage density, quantity, and nutritive value in each field.   

Differences between crude protein regression analysis results in the Sandy and Tifton 

fields (Figure 53 and Figure 54 in Appendix I) may be due to the expression of crude protein on 

a DM basis instead of total.  It may be that there is a stronger correlation of the vegetation 

indices with crude protein depending upon the amount of DM present in the sample.  This could 

be investigated with future analyses involving different crude protein calculations.  

Potential Sources of Error: Pixel Contamination 

 While all reasonable efforts were made to control for error in the field data collection and 

subsequent UAS-derived VI analyses, potential sources of error remain that likely affected the 

results of this study.  The 2016 quadrats had relatively small uncontaminated interior areas (less 

than 20% of the total quadrat area) to use for analysis.  The 2016 flights also nested the smaller 

quadrats inside the larger quadrat frames, so while these smaller frames were not visible in the 

imagery and could not be analyzed separately in this study, the reflection of light from the 

smaller quadrat frames contributed to the overall pixel values.  The high r2 values from the 2016 

flights may be spurious given the relatively small area available for analyses, and may also be 
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significantly affected by the presence of the smaller quadrat frames within the interior quadrat 

areas. 

The material used for the quadrat boundaries, PVC piping, is highly reflective and likely 

contributed to the results even in the 2017 flights.  This highly visible material was instrumental 

in locating and digitizing the quadrats for the 2016 flights, when only the general quadrat 

locations were known. In 2017, however, the quadrat locations were collected using RTK GPS, 

making the highly reflective material of the quadrat frames unnecessary.  A non-reflective 

material may improve the accuracy of results when RTK GPS quadrat locations are collected.   

The determination of contaminated vs uncontaminated pixels for this study was 

subjective and had a large impact on the outcome of the study.  The pixels selected for analysis 

were visually compared to their neighbors, but there was no benchmark pixel or stretch value 

used to determine what constituted the presence of contamination or an unacceptable level of 

contamination.  This subjective pixel selection likely had a profound impact on the 2016 results 

as there were significantly fewer quadrats that were identified from the imagery, making the area 

available for analysis have a larger impact on the overall results for the year.  The 2017 

reflectance data was provided as separate raster bands instead of composite R-G-NIR images, 

which may have impacted the perception of pixel contamination even though the same visual 

selection process was used.  For these reasons, the author recommends using a low- or  

non-reflective material in future flights and continued use of RTK GPS to place the quadrat 

corners in the imagery. 

Potential Sources of Error: Lighting Conditions 

 As mentioned previously, the 2017 sensor, the Parrot Sequoia, has an upward-facing 

irradiance sensor that allows for a signal correction depending upon the lighting conditions at the 
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time of data collection [56], [59].  The 2016 flights, however, used a modified consumer-grade 

camera that did not allow for signal correction based on the lighting conditions.  This means that 

the 2017 flights are more directly comparable to each other, while it is not known to what degree 

ambient lighting conditions may have affected the results of the 2016 flights, or whether the 

same months between years can be realistically compared to each other.  The orthomosaics from 

the 2016 flights were not radiometrically calibrated to be directly comparable to each other, 

which causes issues when comparing between different fields on the same flight date, and 

between the same fields on different flight dates.  Depending on the weather, the lack of an 

irradiance sensor may even cause more profound issues with an orthomosaic where images 

mosaicked together from the same flight and field cannot be directly compared.  This could be 

the case if, for instance, a cloud passes over the sun during a flight.  While the calibration targets 

help correct for these potential issues, the use of the irradiance sensor provides additional control 

for environmental conditions and better measurements of the spectral response of the objects 

being measured [56], [59], [98].  The impact to this study is that the use of the irradiance sensor 

in 2017 is another factor preventing direct comparison of the results generated from the 2016 

flights, and may have influenced the results of the 2016 flights, as the lack of the irradiance 

calibration leads to a less accurate measurement of spectral responses [98], [99]. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This study used UAS-SfM point clouds with orthomosaics from multispectral sensors to 

create DEMs, DSMs, and VIs to estimate biophysical parameters of plants such as plant height, 

biomass, crude protein content, and DM.  UAS-SfM point clouds were classified using an 

iterative algorithm to separate ground from non-ground points in order to try and create a bare-

earth DEM for use with the UAS-SfM DSm to create canopy height models.  The point cloud 

classification was evaluated using test areas with known ground or non-ground features.  The 

canopy height models were evaluated by comparing them to field measurements of average plant 

height. 

Four separate VIs were created from the radiometrically corrected orthomosaic collected 

by the multispectral sensor.  Values from each VI were extracted from quadrat locations in the 

orthomosaic that corresponded to field measurement locations.  Field measurements were taken 

for each flight within quadrat locations distributed throughout the study area, in order to be 

compared to the flight data.  Linear regression analyses were then performed against the VIs and 

the field measurements to determine whether a significant regression exists between one or more 

of the VIs with one or more field measurements. 

The point cloud classification was found to be accurate in areas of high relief, but did not 

perform well enough where the ground surface was not visible to produce an accurate DEM.  

The canopy height models generated using this DEM were likewise shown to be poor predictors 

of measured plant height.  With respect to the VIs, it was found that there is a significant 

regression between HM and NDVI and ENDVI, particularly when using the red-edge band in 

place of the NIR spectral band.  The 2017 May flight over the Tifton field generated the most 

significant regression in the study.  There were lesser but still significant regressions between 
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HM and the other vegetation indices used in this study.  Crude protein content needs further 

study as it showed some promising but inconsistent results.   

This study found promising results for using UAS-SfM-derived products to model plant 

biophysical properties.  Additional improvements to experimental design, including controlling 

for pixel contamination and experimenting with lower flying heights, may yield stronger 

regressions with greater ability to predict field measurements.  This study demonstrates the 

potential for UAS-SfM products to provide a powerful tool for monitoring forage health and 

productivity in grazing lands. 

5.1 Future Research 

The DEMs generated in this study from the UAS-SfM point cloud were limited by the 

inability of the sensors to see the ground during flight.  DEM quality could be improved by 

flying fields after hay harvesting or in the winter, when vegetation cover is minimal.  This could 

then be used in conjunction with a UAS-SfM-derived DSM collected during the growing season.  

This would allow for a more accurate canopy height model to be calculated. 

Pixel contamination posed a significant problem for this study and could be greatly 

reduced by using RTK-GPS for locating quadrat corners, placing a non-reflective marker at each 

corner, and then performing the UAS flight.  Quadrat frames could then be placed on the corner 

markers in the field to facilitate the field measurements, using the corner markers as a guide.  In 

this way the material used to define the quadrat boundaries would not affect the spectral response 

of the quadrat areas collected by the UAS sensor.   

Lower flying heights were demonstrated by Wang et al [7] to have a significant impact 

on the strength of the regression between VIs and HM.  While the flying heights were lowered in 
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the 2017 flights, it may be that lowering them further will help improve the results.  Larger 

quadrat sizes may also help improve results, along with, or independently of, the flying height. 

Preliminary work was done in this study on using point cloud metrics and structure to try 

and estimate field measurements of forage.  This work is included in Appendix 2. Additional 

point cloud metrics such as point density and percentile heights should be analyzed to 

supplement the work done on the standard deviations of the heights within the quadrats to see if 

these metrics provide a useful tool for predicting field measurements of plant height and 

biomass. 
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APPENDIX 1: MONTHLY FLIGHT RESULTS 

 

Figure 47. r2 values based on the regression analysis of each VI vs HM for the 2016 flights.  The 

mean uncontaminated quadrat area (%) is also shown as an area plot. 

 

Figure 48. r2 values based on the regression analysis of each VI vs HM for the 2017 flights.  The 

mean uncontaminated quadrat area (%) is also shown as an area plot. 
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Figure 49. r2 values based on the regression analysis of each VI vs average plant height in 

centimeters for the 2016 flights.  The mean uncontaminated quadrat area (%) is also shown as an 

area plot. 

 

Figure 50. r2 values based on the regression analysis of each VI vs average plant height in 

centimeters for the 2017 flights.  The mean uncontaminated quadrat area (%) is also shown as an 

area plot. 
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Figure 51. r2 values based on the regression analysis of each VI vs % DM for the 2016 flights. 

The mean uncontaminated quadrat area (%) is also shown as an area plot. 

 

Figure 52. r2 values based on the regression analysis of each VI vs % DM for the 2017 flights. 

The mean uncontaminated quadrat area (%) is also shown as an area plot. 
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Figure 53. r2 values based on the regression analysis of each VI vs % Crude Protein (CP) for the 

2016 flights . The mean uncontaminated quadrat area (%) is also shown as an area plot. 

 

Figure 54. r2 values based on the regression analysis of each VI vs % CP for the 2017 flights . 

The mean uncontaminated quadrat area (%) is also shown as an area plot. 
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APPENDIX 2: UAS-SFM POINT CLOUD METRICS VS FORAGE MEASURE 

 

Statistical analysis of a point cloud provides an additional method for using UAS-SfM 

point clouds for estimating plant height, biomass, and other plant properties.  The UAS-SfM 

point cloud statistics may be helpful for estimating plant height when a high-resolution DEM is 

not available for creating an accurate CHM [95].  To explore the relationship between the UAS-

SfM point cloud properties and field measurements, statistics were calculated for the unclassified 

point cloud at each quadrat location for the 2016 flights.  The unclassified point cloud was used 

as the vegetation canopy captured in the non-ground points were of principle interest for this 

portion of the analysis [95].  The minimum, maximum, and mean elevation for the unclassified 

UAS-SfM point cloud was calculated within each quadrat area, along with the point count and 

standard deviation of the point heights.  The standard deviation of the point heights within the 

quadrat area was used to measure the point cloud structure and was compared to each of the 

laboratory measures for each field for all flights.  The relationship between the height metrics 

and point density of the UAS-SfM point cloud have not yet been analyzed in relationship to the 

field measurements and represent an area for future work. 

The regression analysis between the standard deviation of point heights within the 

quadrat area and the field measurements does not indicate a strong correlation with the field 

measurements.   For the 2016 Sandy field data, the most significant result was with the HM 

measurement which yielded an r2 value of 0.16, indicating that only 16% of the variance is 

explained by the regression model.  The rest of the regression models explain less than 10% of 

the variance with plant height, percent crude protein (%CP), and percent DM.  These results are 

shown in Figure 55. 
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a 

 
b 

 
c 

 
d 

Figure 55. The results of the regression analysis between the standard deviation of point heights 

with (a) HM (kg/ha); (b) Average Plant Height (cm); (c) %DM; (d) %CP.  Values are for the 

2016 flights only. 
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APPENDIX 3: POINT CLOUD CLASSIFICATION CODE 

 

""" 

Creates a folder directory to hold all the outputs. 

Recursively tiles and segments point clouds. 

""" 

 

import os 

import sys 

import subprocess 

import shlex 

import shutil 

import datetime 

import time 

from Tkinter import Tk 

import tkFileDialog 

import tkMessageBox 

 

 

def point_cloud_processing(r, main_dir, raw_pt_cld, tile_size, spike, bulge, step): 

    """Process for processing point clouds""" 

    # Argument List for lastools 

    args_list = [ 

        ("Tiling point cloud", raw_pt_cld, shlex.split(r"lastile -i *.las -odir '{0}' -tile_size {1} -buffer 5 -cores 

8".format(os.path.join(main_dir, "Tiles"), tile_size))), 

        ("Sorting tiles", os.path.join(main_dir, "Tiles"), shlex.split(r"lassort -i *.las -odir '{}'".format(os.path.join(main_dir, 

"SortedTiles")))), 

        ("Classifying points", os.path.join(main_dir, "SortedTiles"), shlex.split(r"lasground -i *.las -odir '{0}' -spike {1} {2} -

step {3}".format(os.path.join(main_dir, "Ground"),spike, bulge, step))), 

        ("Remove buffers", os.path.join(main_dir, "ClassReset"), shlex.split(r"lastile -i *.las -odir '{0}' -

remove_buffer".format(os.path.join(main_dir, "RemoveBuffers")))), 

        ("Merge Tiles", os.path.join(main_dir, "RemoveBuffers"), shlex.split(r"lasmerge -i *.las -odir '{0}' -o 

Pass{1}.las".format(os.path.join(main_dir, "NewCloud"), r))) 

    ] 

 

    # Handle point reclassification 

    if r < (len(passes)-1): 

        args_list[3] = ("Keep ground points and reset class", os.path.join(main_dir, "Ground"), shlex.split(r"las2las -i *.las -

odir '{0}' -keep_class 2 -set_classification 0".format(os.path.join(main_dir, "ClassReset")))) 

    elif r == (len(passes)-1): 

        args_list[3] = ("Keep ground points", os.path.join(main_dir, "Ground"), shlex.split(r"las2las -i *.las -odir '{0}' -

keep_class 2".format(os.path.join(main_dir, "ClassReset")))) 

 

    # Run passes 

    for arg in args_list: 

        print arg[0] 

        os.chdir(arg[1]) 

        proc = subprocess.check_output(arg[2]) 

        if proc != "": 

            # If the process fails, need to remove existing folder directory 

            print "EXCEPTION", proc 

            raise Exception(proc) 

 

    # Lock should be gone on old folder, try to remove 

    old_main_dir = "{0}\Pass{1}_{2}mTile".format(output_dir, r, (tile_size*2)) 

    if os.path.exists(old_main_dir): 

        try: 

            shutil.rmtree(old_main_dir) 

            print "Successfully removed old processing folder {0}.".format(old_main_dir) 
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        except: 

            print "Still can't removed old directory {0}.".format(old_main_dir) 

 

 

def processing_tree(raw_pt_cld, passes, output_dir, overwrite_output, subfolders): 

    # Index the raw point cloud 

    os.chdir(raw_pt_cld) 

    print "Indexing raw point cloud" 

    args = r"lasindex -i *.las" 

    results = subprocess.check_output(args) 

    if results != "": 

        raise Exception("Unable to index raw point cloud. Check file path.") 

    # Work through passes after creating folder structure for each pass 

    for r in range(0, 3, 1): 

        print "Pass", r+1 

        # Determine parameters from input Passes dictionary 

        tile_size = passes[r][0] 

        spike = passes[r][1] 

        bulge = passes[r][2] 

        step = passes[r][3] 

        # Create raw point cloud directory 

        if r > 0: 

            raw_pt_cld = os.path.join(output_dir, "Pass{}".format(r + 1), "NewCloud") 

        main_dir = "{0}\Pass{1}_{2}mTile".format(output_dir, r, tile_size) 

        if os.path.exists(main_dir): 

            if not overwrite_output: 

                raise Exception("Directory already exists: {}".format(main_dir)) 

            else: 

                shutil.rmtree(main_dir) 

                os.makedirs(main_dir) 

 

        # Create folder structure 

        for f in subfolders: 

            new_folder = "{0}\{1}".format(main_dir, f) 

            os.makedirs(new_folder) 

 

        # Process point cloud 

        point_cloud_processing(r, main_dir, raw_pt_cld, tile_size, spike, bulge, step) 

 

def retry(passes, raw_pt_cld, output_dir, overwrite_output, subfolders): 

    print "Reducing tile size to conserve memory" 

    for place, p in enumerate(passes): 

        tile_size = p[0] 

        passes[place][0] = tile_size / 2 

    for place, p in enumerate(passes): 

        print "New tile size: {0}".format(passes[place][0]) 

 

    return passes 

 

 

def confirm_choice(): 

    result = tkMessageBox.askyesno("Confirm Overwrite", "Overwrite existing data in this directory?", icon = "warning") 

    print result 

    return result 

 

 

 

# Variables --------------------------------------------------------------------------------------------------------------------------------------- 

# Get data from user 

Tk().withdraw() 

raw_pt_cld = tkFileDialog.askdirectory(title = "Raw Point Cloud Location") 

output_dir = tkFileDialog.askdirectory(title = "Output Directory") 
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overwrite_output = confirm_choice() 

 

# Pre-defined variables 

subfolders = [ 

    "Tiles", 

    "SortedTiles", 

    "Ground", 

    "ClassReset", 

    "RemoveBuffers", 

    "NewCloud" 

] 

 

 

timestamp = time.time() 

datestamp = datetime.datetime.fromtimestamp(timestamp).strftime('%m-%d-%Y %H:%M:%S') 

log_file = open(os.path.join(output_dir, "error_log.txt"), "w") 

log_file.write("Error Log for Point Cloud Segmentation Script {0}\n".format(datestamp)) 

 

 

# Process ---------------------------------------------------------------------------------------------------------------------------------------- 

 

#Create folders for each pass over point cloud 

pass_folders = [ 

    os.path.join(output_dir, "Pass1"), 

    os.path.join(output_dir, "Pass2"), 

    os.path.join(output_dir, "Pass3"), 

] 

 

# Pass variables 

# Pass : [TileSize, Spike, Bulge, Step] 

passes = [ 

    [250, 0.05, "-no_bulge", 1], 

    [500, 0.1, "-no_bulge", 5], 

    [1000, 0.2, "-bulge 1", 50] 

] 

 

# Process ----------------------------------------------------------------------- 

result = None 

while result is None: 

    try: 

        processing_tree(raw_pt_cld, passes, output_dir, overwrite_output, subfolders) 

        result = 1 

    except: 

        passes = retry(passes, raw_pt_cld, output_dir, overwrite_output, subfolders) 

        continue 

 

 

# Delete intermediate data 

print "Removing intermediate data from Pass" 

# os.chdir(output_dir) 

try: 

    for p in pass_folders[:2]: 

        if os.path.exists(p): 

            shutil.rmtree(p) 

    shutil.move(os.path.join(output_dir, "Pass3\\NewCloud"), output_dir) 

    shutil.rmtree(pass_folders[2]) 

except: 

    pass 

 

log_file.close() 


